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SUMMARY 

In this paper we present a new version of the ‘modified finite element method’ (MFEM) presented by 
Gresho, Chan, Lee and Upson.’ The main modification of the original algorithm is the introduction of a 
cost-effective and memory-saving iterative solver for the discretized Poisson equation for the pressure. The 
vectorization of the preconditioner has been especially considered. For low Prandtl number problems we 
also split the advection-diffusion operator of the energy equation into explicit and implicit parts. In that 
sense the present approach is related to the recent implicitization of the diffusive terms introduced by 
Gresho and Chan’ and by G r e ~ h o . ~  The algorithm is applied to the study of buoyancy-driven flow 
oscillations occuring in a horizontal crucible of molten metal under the action of a horizontal temperature 
gradient. 

KEY WORDS Finite elements Transient flow Three-dimensional flow Natural convection Incomplete Choleski 
conjugate gradients Iterative solver Vectorization Crystal growth Gallium arsenide 

INTRODUCTION 

In the present paper we present a modified form of the algorithm developed by Gresho et al.’ for 
solving the time-dependent incompressible Boussinesq equations. The original algorithm, labelled 
a ‘modified finite element method’ (MFEM) by their authors, has been changed in two ways: 
firstly to allow for a pressure update at each time step without input/output (I/O) cost (on 
CRAY-l), and secondly to increase the stability-controlled time step of the energy equation in 
the case of low Prandtl number fluids. A semi-implicit method has recently been introduced by 
Gresho and Chan’ and G r e ~ h o . ~  The present scheme differs from these two papers in the 
following points: (i) we have introduced the implicitization of the diffusive terms for the energy 
equation only, and our scheme is fully implicit for the heat diffusion; (ii) the preconditioner of 
the conjugate gradient solver generalizes an incomplete Choleski decomposition introduced by 
Van der Vorst4 for its use with finite elements. 

We have used most of the modifications to the conventional Galerkin finite element method 
(GFEM) introduced in Reference 1, i.e., mass lumping, one-point quadrature and explicit time 
integration with a balancing tensor diffusivity (BTD). An iterative solver, based on the incomplete 
Choleski conjugate gradient (ICCG) algorithm, has been implemented for solving the discretized 
consistent Poisson equation for the pressure at each time step without any disk storage on large 
three-dimensional problems (typically 10000 nodes). 
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In the case of low Prandtl number fluids (order of lop2)  the forward (explicit) Euler scheme is 
cost-ineffective since the stability-limited time step tends to zero together with the Prandltl number; 
moreover, the BTD (efficient in advection-dominated problems) is then helpless. The advection- 
diffusion (AD) operator of the energy equation has been split into an explicit part for advection and 
an implicit part for diffusion. This time-marching scheme requires the solution of a linear system 
(constant in time) at each time step; a direct solver with prefactorization of the matrix, storage 
on disk and forward reduction/back substitution would make it unaffordable (because of the 
IjO cost) on the CRAY-1. The ICCG solver has once more revealed itself as a powerful tool 
which allows for an in-core algorithm together with reasonable CPU times. Our iterative solver 
has been implemented on the basis of a vectorizable scheme developed by Van der Vorst4 for 
a finite-difference five-point stencil. 

We apply the method to the calculation of the transient three-dimensional flow which occurs in a 
horizontal crucible of molten metal under the action of a horizontal temperature gradient. Such a 
configuration is typical of the Bridgman crystal growth process, where it is known that thermal 
oscillations appear beyond a critical value of the temperature gradient. In the present paper we 
would like to confirm the value of the critical temperature gradient found for gallium arsenide with 
a steady state code5 and to investigate the nature of the three-dimensional flow beyond this critical 
value. 

SPATIAL DISCRETIZATION AND MODIFIED GALERKIN 
FINITE ELEMENT METHOD 

The non-dimensional form of the Navier-Stokes equations with the Boussinesq approximation 
taken into account is given by 

avjdt + v . V  v = - Vp + Av - Gr Te , 
aTjat -k v-VT = Pr-' AT, (1) 

v-v = 0. 

The meaning of the symbols is given in Table I. The non-dimensional form of the equations has 
been obtained with the use of a characteristic dimension L and a characteristic temperature 
deviation 6T from a reference temperature To, while reference values for velocity, time and pressure 
are given by the groups v/L, Lz/v and p(v/L)' respectively. We note that, for a given geometry, the 
solutions of (1) will depend upon the Grashof and the Prandtl numbers (defined in Table I). In our 
applications Pr is low and typically of the order of 0.07, while we wish to obtain solutions for 
high values of Gr of the order of lo6. 

The spatial discretization is based on the Galerkin finite element method, where the velocity, 
temperature and pressure are interpolated as follows; 

N 

Th(x, t) = 2 Ti(t)4i(x), 

M 

i =  1 
pyx, t )  = c P'(t)7Ci(X). 

The finite element mesh has N nodes and M elements. The 4i are the Co-trilinear shape functions 
defined on the isoparametric brick-like elements, and the ni are discontinuous piecewise-constant 
shape functions. 
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Table I. 

V 

P 
T 
t 
e 
Gr 

m( TI - T0)gL3/v2, where 
c( 

V 

~~~~~~ 

velocity vector 
pressure 
temperature 
time 
unit vector oriented along the gravity field 
Grashof number, defined as 

coefficient of volumetric expansion 
acceleration due to gravity 
typical temperature deviation 
characteristic length 
kinematic viscosity 

Pr Prandtl number, given by 
pvcdk, where 

heat capacity per unit of mass 
thermal conductivity 
specific mass 

2 
P 

Applying the GFEM to the set ofequations (l), and using the same notation as Gresho et d.,' we 
obtain the following set of ordinary differential equations: 

MV + K(V)V + CP = F , 
MsT + K,(V)T = F,, 

CTV = 0,  

(3) 

with the initial conditions 

V(0) = V,, where CTV, = 0 ,  

T(0) = To. (4) 

In (3) V, T and P represent respectively the vectors of nodal velocities, temperatures and pressures; 
F is the vector of generalized forces taking the buoyancy terms into account and F, is the vector of 
generalized fluxes. The subscript 's' refers to  the energy equation. M and M, are the mass matrices, 
K(K,) is the sum of the advection matrix N(NJ and the diffusion matrix K*(K:), while C is the 
gradient matrix whose transpose CT denotes the divergence matrix. 

Applying the operator CTM-' to the first equation (3), it is easy to obtain, in view of the 
third equation (3), the discretized consistent Poisson equation for the pressure; i.e., 

(CTM-'C)P AP = CTM-' [F - K(V)V]. (5 )  

We note that the symmetric matrix A defined in (5) is positive-definite provided one has removed 
the possible indeterminacy of the pressure and spurious pressure modes. 

Several approximations have been brought to the GFEM towards an efficient algorithm: 

1. The mass matrices M and M, have been diagonalized by mass lumping. A preprocessor 
evaluates the coefficients of the full mass matrices by means of a 23-point quadrature, and the 
diagonalization is obtained by means of the true row sum technique. 
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2. The gradient matrix is evaluated by means of a one-point quadrature and stored element 
by element. 

3. The matrices K(V) and K,(V) as well as the vectors F and F, are evaluated by means of a 
one-point quadrature rule. However, the K(V) and K,(V) matrices are only used for forming 
the products K(V)V and K,(V)T. With the one-point quadrature rule it is easy to calculate 
these products through the evaluation of V at the centre of the element and of the coefficients 
of C. Such a method, used in Reference 1, is cost-efficient and allows for a highly vectorized 
code. 

Gresho et al.’ note that the one-point quadrature rule for calculating K and K, leads to their 
singular behaviour with respect to ‘2 Ax’ waves under purely natural boundary conditions; 
the singular behaviour may also occur when natural boundary conditions are imposed on 
a part of the boundary. A correction (called the hour-glass matrix) has been suggested in 
Reference 1 for avoiding that difficulty. The present paper is concerned with the buoyancy-driven 
flow at a low Prandtl number in a horizontal furnace; a part of the boundary is subject to natural 
boundary conditions. We have compared the one-point and the 23-point quadrature rules for 
calculating the matrices K and K,. We found that the results obtained with both i:ules were 
essentially the same and that small wiggles, whenever present, were not caused by the one-point 
integration. We have concluded that, for our type of problem characterized by a low valule of Pr, the 
hour-glass correction of Reference 1 was unnecessary, the reason being that the flow is not 
advection-dominated and the ‘2 Ax’ waves are not excited. 

TIME INTEGRATION 

Gresho et al.’ integrate the first two equations (3) by means of a forward Euler scheme; a correction 
term called the balancing tensor diffusivity (BTD) is added to the K matrices for improving the 
stability of the scheme. More precisely, let V,, T, denote the nodal velocities and temperatures at 
time t,, and let At  be the time increment from t ,  to t,+ The solution at  t,, is then obtained as 
follows: 

V,+ 1 = V, + AtM-’ [F, - K(V,)V, - CP,] , 
(6) T,+ 1 = T, + AtM,- CF,, - K,(V,)T,I 7 

AP, = CTM-’ [F, - K(V,)V,] . 

where P, has been calculated from 

(7) 

rij  = uiuj At12 (8) 

A balancing tensor 

is added to the diffusive coefficients in (6). 
It is important at this stage to draw attention to the stability of the forward Euler scheme and the 

associated time step. Let us consider the one-dimensional advection-diffusion equation with 
constant coefficients, 

The combined use of the Galerkin method, linear elements on a uniform mesh and the forward 
Euler scheme leads us to a maximum time step given by 

At 6 Ax2/2k (10) 
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and 
At d 2k,Juz. 

When the BTD is used together with the forward Euler scheme, i.e., when k is replaced by 
k + u2 At12 in (9), one finds an upper bound for At given by 

Ax 
At < (12) k [ 1 + (1 + u2 A ~ ' / k ~ ) l / ~ ]  ' 

While the BTD is especially efficient for advection-dominated flows, it is much less useful for low 
Pr flows, since (12) becomes equivalent to (10) when Pr is small, and At tends to vanish when k 
becomes large. 

It is clear that the advantages of the fully explicit scheme are lost for low Prandtl number flows 
because the stability condition (10) leads to a time step which is much too small. The same situation 
has been encountered in Reference 6, where it has been found economical to split the advection- 
diffusion operztor into an implicit part for the diffusion and an explicit part for the advection. An 
important problem is then to solve the implicit equation for the diffusion equation in an efficient 
manner. 

Since the matrix of the system is constant in time, one approach is to factorize the matrix in a 
preprocessor code and to perform a forward reduction/back substitution at each time step. This 
technique is not costly in CPU time and very cost-efficient when the lower-upper matrices can be 
stored in core. However, the large problems solved on vector computers would require a storage of 
the factorized matrix on disk, and the 1/0 time would then exceed the CPU time by one or two 
orders of magnitude. Noting that the time integration of the diffusion operator leads to a self- 
adjoint system, we found that the incomplete Choleski conjugate gradient technique would be a 
good candidate since the convergence is then guaranteed. The performance of the ICCG solver will 
be considered later. 

We may now review the organization of the algorithm which we have eventually adopted. 
Starting with a velocity field V, satisfying 

CTV, = 0,  (13) 
we evaluate the right-hand sides F, and FSn as well as K(V,)V, and N,(V,)T, by a loop on 
the elements. Then we solve the consistent Poisson equation for the pressure, 

AP, = CTM-'[F, - K(V,)V,], (14) 
by means of the ICCG technique with Pnp1 as a first guess. We compute C P, and then V,, as 
follows: 

Vn+l = V, + AtM-'[F, - K(V,)V, - CP,] . (1 5)  

Next we use an explicit operator similar to (15) for updating the temperature field on the basis of the 
advective terms; i.e., 

T* = T, + At M,- [F,, - N,(V,)T,] . (16) 
Equations (15) and (16) are calculated in a single loop on the elements. The diffusive contribution 
to the temperature field is then calculated by means of an implicit method; i.e., 

K,*T,+,= -MS(Tn+1 -T*)/At 

or 

BT, + = (K,* + M,/At)T, + = M,T*/At . (18) 
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No BTD has been added to the energy equation in the implicit scheme. The matrix B is positive- 
definite since the sum of two positive-definite matrices maintains the same character. We may thus 
use the ICCG routine for solving (18). In References 2 and 3 all the diffusive terms (thLe physical 
diffusivity and the BTD) of the energy and momentum equations have been integrated via a semi- 
implicit trapezoid rule, the other terms being integrated via a forward Euler scheme. The stability 
of the scheme is then increased, at the cost of a new diffusion matrix in core (this would be a 
disadvantage in our problem since the number of variables is limited by memory). 

The matrices A and B appearing in (14) and (18) respectively are evaluated by a preprocessor 
code, scaled and stored in core together with the associated matrices required by the ICCG 
algorithm. 

The system (13)-(17) guarantees mass conservation in the discrete sense. This is easily seen by 
calculating the product of (15) on the left by CT, from which we get, in view of (14), 

CTV, + 1 = CTV,. (19) 
However, (19) holds only if (14) is solved exactly. Using the iterative ICCG technique, ( 14) is only 
solved up to an imposed level of accuracy E,  so that (19) is written more correctly as 

CTV,+ = CTV, + R, + 1 ,  (20) 
where R,+ tends to zero when the required accuracy is higher. Since the sum of residues R, over a 
large number of time steps could possibly cause a perturbation which significantly affects the 
solution, we found it necessary to implement a ‘return to the discretized mass consistency’ after a 
given number &Time steps n, depending upon E.  The projection of the calculated velocity field c on 
a solenoidal space is performed by the technique introduced by Gresho et al.l within the 
framework of the subcycling of the pressure. Defining a vector A by means of the equation 

A A = c ~ V ,  (21) 

v=V -M-’CA (22)  

we calculate the divergence-free velocity field as 

The system (21) is again solved by means of the ICCG technique, with A = 0 as a first guess. 

THE INCOMPLETE CHOLESKI CONJUGATE GRADIENT TECHNIQUE 

We have seen in the previous section that the ICCG technique is used for solving the systems (14) 
and (18). Our choice has been guided by the following reasons: 

1. For the size of problem that we wanted to solve (10000 nodes, 47000 variables), t;he systems 
(14) and (18) do not require with this technique any I/Os on a 9 x lo5 words CRAY-1S 
computer. The cost of the I/Os would be prohibitive with a direct Choleski solver. 

2. The convergence of the iterations is guaranteed since A and B are symmetric positive-definite 
matrices. 

3. The algorithm can be highly vectorized, and the CPU time is not prohibitive as compared 
with a back substitution as long as the iterations are initiated with a good approximation of 
the solution; i.e., the solution at the previous time step. 

Although it is not the case in the present paper, the technique is advantageous when the A or B 
matrices are not constant in time; for example, on a moving mesh or when the thermal diffusivity is 
temperature-dependent. A factorization of A or B would therefore not be viable, whereas the 
additional cost of the conjugate gradients would be limited to re-evaluating the coefficients of the 
matrices. 
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To describe our ICCG algorithm, let us introduce a generic linear system 

d x = b ,  (23) 
with d being an N x N sparse-symmetric positive-definite matrix. The conjugate gradients are 
a semi-iterative algorithm in the sense that the solution of (23) will be found, in the absence of 
rounding errors, in at most N iterations. However, this property is not useful when N is large, since 
the algorithm will be stopped when a precision E has been reached. One proves (see, for example, 
Reference 7) that the number of iterations necessary to make the error less than E times the initial 
error is roughly bounded by (1/2)J[X(A)] In ( 2 / ~ ) ,  where X ( d )  is the spectral condition number 
of d. In most practical applications, the condition number X ( d )  is too high and does not allow 
for a fast convergence of the algorithm. Moreover, the rounding errors may then become 
prohibitive and limit the convergence in an unacceptable way. For these reasons the conjugate 
gradients are almost always used with a preconditioner. 

Preconditioning the system (23) means solving 

where & is a symmetric positive-definite matrix; the preconditioning is efficient when the 
condition number X(&- ' d) is significantly smaller than X ( d ) .  The product &- ' at is never 
formed explicitly, and the preconditioned conjugate gradient method requires solving a system 
in &at each iteration. Formally, this system will be written as 

&Z = XI, (25) 
where 2 and x' are some vectors taking place in the algorithm. For reducing X(&- 'd)  the 
best choice is obviously &= d. The preconditioned conjugate gradient method then becomes 
a direct method requiring the factorization of 59; this is precisely the operation to avoid. A good 
preconditioner will present the fo!lowing qualities: 

The computational effort for solving (25) is small compared with the direct resolution of (23 ). 
X ( A -  lcd')is as small as possible, and significantly smaller than X(d) ,  i.e., &is close to d. 
The storage for &is not excessive. 

1. 
2. 
3. 

The class of incomplete Choleski preconditioners is restricted to &matrices of the form 

&=95eT, (26) 

where 9 is lower triangular; solving (25) is then equivalent to solving two triangular systems. In the 
version we have implemented, the 9' matrix has the same sparsity as the upper triangular part of 
d; this algorithm has been labelled ICCG (1,l) by Meijerink and Van der Vorst.* This 
preconditioner has the advantage of not requiring extra memory for the storage of 9, since by an 
appropriate scaling of d the coefficients of YT are identical to the coefficients of the upper part 
of d.  

On a CRAY-1 the possibility of vectorizing must also be considered. The conjugate gradient 
method itself is vectorizable if an appropriate storage of d allows for vectorizing the matrix vector 
product d x .  For storing the A and B matrices of (14) and (1 8), we opted for a structure privileging 
the diagonal direction rather than the rows or the columns. This structure allows for operations on 
long vectors if the mesh numbering has a good regularity, and reduces the size of the pointer tables. 
The pattern of non-vanishing diagonals is detected by a preprocessor, which also establishes the 
system of pointers minimizing the memory requirement. This 'multidiagonal' structure is not 
limited to brick-like meshes, although optimum vectorization is achieved on highly regular grids. 
The incomplete Choleski preconditioner unfortunately presents a feature inhibiting the vectori- 
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zation: solving triangular systems implies first-order recurrences (the first upper diagonal of 5ZT 
is non-vanishing), and the FORTRAN compiler will generate serial code. The preconditioner is 
then the bottle-neck of the algorithm. This problem has been examined by several 
we opted for an algorithm developed by Van der Vorst4 for a five-point finite difference stencil. 
The basic idea of the algorithm is to split 9' into YT and LPttT, YT being the restriction 
of 5ZT to the main and first upper diagonal, and 

p = p + y ' T .  (27) 
The vector of unknowns is then partitioned into blocks having a dependence via but not via 
9'". The length of a block is the distance between the first non-vanishing diagonal of 6prrT and the 
main diagonal. The inverse matrix 2"' is then approximated by a truncated series, and the 
approximation of 5Zr-' is stored in core. The first-order recurrence introduced by the first upper 
diagonal of YT has been avoided, and the parallelism of the algorithm increases from 1 to the 
size of the block. In the application presented in this paper, the length of the vectors is 
approximately 50. The quality of the preconditioner is slightly affected by the truncation, and 
for achieving a given precision the number of conjugate gradient iterations will be superior as 
compared with the original ICCG (1,l). However, the computer time per iteration is strongly 
reduced, and on a CRAY-1 the parallel algorithm performs much better globally than the serial 
one. 

APPLICATION: THREE-DIMENSIONAL OSCILLATORY FLOW 
IN A BRIDGMAN HORIZONTAL FURNACE 

We wish to apply the method described in the third section to the transient periodic flow taking 
place in a horizontal Bridgman furnace, where a crucible filled with molten metal is, subjected 
to a horizontal temperature gradient. The crucible, shown in Figure 1, has the shape of a half 
cylinder of length L and radius h with rounded ends. We consider here a simplified parallelepiped 
geometry, also shown in Figure 1, and we will a priori limit ourselves to solutions which are 
symmetric with respect to the plane of symmetry of the crucible. The flow domain is then restricted 
to an L x h x h box, where z = 0 is a plane of symmetry. We choose h as a characteristic length, 
while the aspect ratio L/h is here equal to 4. 

Figure 1.  Perspective view of the crucible and idealized geometry 
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TI 1 - x/4 

Figure 2. Boundary conditions 

The boundary conditions are shown in Figure 2. The fluid does not slip along the walls while the 
upper plane is a horizontal free surface; the normal velocity and the tangential forces vanish 
identically on the free surface and on the plane of symmetry. The thermal boundary conditions of 
the actual process are very complex, since radiation dominates the heat exchange between the 
furnace and the crucible. Here we will adopt a simpler set of thermal boundary conditions: we 
assume that the (non-dimensional) temperature is imposed on all the faces with a value which varies 
linearly between 1 on the plane x = 0 and 0 on the plane x = 4. The direction of gravity is (0, - 1,O) 
with the co-ordinate system shown in Figure 1. The actual fluid would be molten gallium arsenide, 
with Pr = 0069. 

A two-dimensional representation of the horizontal Bridgman growth has been studied by 
Crochet et u L . , ~  with the assumption that the z component (see Figure 1) of the velocity field 
vanishes while the velocity components and the temperature are z-independent. Using both finite 
difference and finite element techniques, these authors predicted the onset of periodic oscillations 
in the crucible of molten metal. The bifurcation from a stationary solution to a periodic flow occurs 
at a critical value of the Grashof number Gr which was also identified as the limit of convergence of 
the Newton-Raphson iterations proper to a steady finite element code. With a 4 1  aspect ratio and 
Pr = 0.069 the critical value of Gr is 7.1 x 105.5 The order of magnitude of the periods of oscillation 
found in Reference 6 agreed with experimental data. 

Using the same domain and boundary conditions indicated above, Dupont et aL5 have extended 
the analysis of Reference 6 to three-dimensional stationary flows. They used a Galerkin finite 
element method with bilinear shape functions for the velocity components and the temperature 
and a penalty formulation for the pressure. Newton-Raphson iterations were used on the complete 
set of equations. They showed that the three-dimensional effects are important and that the 
convective pattern is different in two and three dimensions. The limit of convergence with steady 
codes is also lower in three- as compared to two-dimensional flows. 

In the present paper we wish to address the important question as to what happens at a Grashof 
number higher than the limit of convergence of the three-dimensional stationary code. In 
particular we wish to discover whether the flow bifurcates towards an oscillating solution. 

First we have generated transient solutions on a finite element mesh called 3D2 which was used 
in Reference 5 and which is shown in Figure 3. It contains 40 x 14 x 10 elements, 6765 nodes and 
32660 variables with the present formulation. The limit of convergence of the stationary code with 
this mesh was Gr = 5 x lo5. For monitoring the progress of the transient behaviour, we define 
a non-dimensional kinetic energy K as 
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Figure 3. Perspective view of the three-dimensional finite element mesh 3D2 

*lo4 
25 

Figure 4. Kinetic energy versus non-dimensional time and levels of kinetic energy of the stationary solutions 

2K = In(.. + u2 + w2)dR, (28) 

where s1 is the flow domain and u, u, w denote the velocity components. 
Figure 4 shows the evolution of K as a function of time at Gr = 3 x lo5 (where a steady state was 

calculated) and at Gr = 5 x lo5 (where we lost convergence). For this calculation the experiment- 
ally determined time step is and 1750 steps have been calculated. The horizontal lines in 
Figure 4 denote the levels of the kinetic energy which have been obtained in Reference 5 for the 
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stationary 

stationary 

transient 

Isotherms in the p t a ~  2-0 

Figure 5. Comparison of the transient and stationary solutions 

steady solutions. It is clear in Figure 4 that at Gr = 3 x lo5 the transient solution evolves towards a 
stationary flow with a value of K consistent with our earlier findings. At Gr = 5 x lo5 the damping 
is less severe but still present. In Figure 5 we compare the velocity vectors in the plane of symmetry 
obtained at Gr = 3 x lo5 with the steady state solution and the transient code at t = 0.175. In 
Figure 5 we also show the isotherms in the plane of symmetry. In Figure 6 we show the velocity 
profiles obtained at the intersection of the plane of symmetry and the free surface. While the 
transient solution is still oscillatory at the time used for the comparison, we find good agreement 
between the earlier stationary results and the transient ones obtained with our present code. 

We have then studied the nature of the flow at the higher value of Gr = 7 x lo5, where we could 
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Figure 6 Velocity along the line (z = 0, y = 1). Stationary and transient solutions 

not find a stationary solution. For that purpose we have used the mesh 3D2 and a refined mesh 
3D3, shown in Figure 7, that contains 49 x 14 x 12 elements, 9750 nodes and 47232 variables. The 
size of the smallest element is 0.03 x 0028 x 00234. The results shown have been obtained on the 
refined mesh 3D3; we will also discuss the agreement between the results on different meshes. By 
means of numerical experimentation we found that the present explicit-implicit algorithm is stable 
on 3D3 as long as At < 1.5 x By trial and error we have also found that the original fully 
explicit algorithm would require a time step At < 2.5 x and thus our modification of the 
time-marching technique allowed us for the present problem to multiply the time step by a 
factor of 6. 

this time step 
has been chosen with the purpose of achieving a better accuracy over a large number of steps. In a 
real experiment with gallium arsenide and a crucible depth of 2.5 cm, the ratio between real and 
non-dimensional time would be 1250, and the real time covered by the simulation would be 
700 s. As initial conditions we selected a vanishing velocity field and a non-dimensional 
temperature field given by T =  1 - x/4. 

On both meshes at Gr = 7 x lo5 the solutions do not tend to a stationary flow. The graph of 
the kinetic energy as a function of time shown in Figure 8 (3D3) shows large and undampened 
oscillations. While the computation has been carried on over a large time interval covering many 
oscillations of the kinetic energy, we have not been able to identify a periodic behaviour of the 
kinetic energy. This result disagrees with the two-dimensional flow observations, where a true 
periodic behaviour sets in after a few oscillations of the kinetic energy.6 In order to verify the 
accuracy of our three-dimensional code for low Prandtl number flows, we have reproduced some 
two-dimensional situations studied in Reference 6 and have found identical results (i.e., they 

On 3D3 the computation has been pursued over 5600 time steps with At = 



Figure 7. Perspective view of the three-dimensional finite element mesh 3D3 
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Figure 8. Kinetic energy versus non-dimensional time; Gr = 7 x lo5 
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22.- 

21- 

20.- 

exhibit the same periodicity). The lack of true periodicity of the three-dimensional motion has been 
observed on both meshes. The oscillatory motions were very similar, and the flows on the different 
meshes remained close over two or three oscillations of the kinetic energy. When pursued beyond 
two or three oscillations of the kinetic energy, the two solutions differ somewhat in view of some 
small differences in the main frequencies. The typical flow pattern will be described in 3D3, and the 
spectra obtained with the two meshes will then be compared. 

The three-dimensional convection pattern is much more complex than the two-dimensional one. 
To illustrate this we have chosen a time interval 0.370 < t ,< 0.405 identified in Figure 8 by two 
vertical reference markers. An enlarged view of the kinetic energy over this interval is given in 
Figure 9; the three-dimensional solution will now be described at eight discrete times t ,  to t ,  
separated from each other by 50 equal time steps. Figure 10 shows the velocity vectors in the plane 
of symmetry. One observes the motion of the eddy located in the upper right corner at time t , ,  at 
mid-height at t ,  and in the upper right corner again at t,. One should not conclude that the interval 
[t l ,  t,] is a period of the flow, because the convection pattern does not show the same periodicity in 
other regions of the flow domain. Figure 11 shows the velocity field on the free surface. A small 
eddy appears and then disappears near the plane of symmetry. The convection pattern is even more 
complicated inside the domain: Figure 12 shows the projection of the velocity vectors on the 
horizontal plane at mid-height. While several convection cells successively appear and disappear, 
one cannot detect the periodic character of the flow. 

Figure 13 and 14 show the isotherms in the plane of symmetry and in the horizontal plane at mid- 
height respectively. Figure 14 shows that the temperature field depends strongly upon z and 
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Figure 9. Detail of Figure 8 
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Figure 12. Projection of the velocity vectors on the y = 0.5 horizontal plane 

free surface 

8 
d 

t 

bottom 11 

12 

13 

t5 

t4 

Figure 13. Isotherms in the plane of symmetry 



PRECONDITIONED CONJUGATE GRADIENTS 299 

plane of symmetry 

d 

wall t l  15 

i2 t6 

t3 17 

14 

Figure 14. Isotherms in the y = 0.5 horizontal plane 
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that the amplitude of the oscillations is important in the core of the domain. Quantitative 
information about the velocity field is given in Figures 15 and 16, where we plot the (non- 
dimensional) velocity u versus x along the intersection of the plane of symmetry and of the free 
surface. 

With a view to detecting the periodicity of the flow on 3D2 and 3D3, we have performed a 
Fourier analysis of the kinetic energy. Figure 17(a) shows the Fourier transform of the 3D2 signal 
versus the non-dimensional frequency f,,. One detects a dominating frequency fi = 167.6, which in 
the real experiment would correspond to a period of 46.9 Figure 17(b) shows the Fourier transform 
of the 3D3 signal. Here one finds two dominating frequencies, f l  = 150.8 and f 2  = 188.5, which in 
the real experiment would correspond to periods of 52.1 and 41.7. 

Finally we wish to give some technical details about the performance of the code with respect to 
the run at Gr= 7 x lo5. The relative convergence criteria for the ICCG algorithm were 
E = 5 x for the ‘B system’ introduced in the third section. 
The velocity field has been projected on a solenoidal subspace every 20 time steps. In solving 
the consistent Poisson equation we opted for these conservative values of E and n, because we 
wanted to avoid an artificial excitation of oscillating modes. 

On a CRAY-1S computer the CPU time was 4s  per time step, without any 1/0 cost. This 
CPU time was composed as follows: 

1. 1.0s for the computation of the right-hand sides, the multiplication by CT, the time- 
marching algorithm, etc. 

2. 1.75 s for solving the consistent Poisson equation. 

for the ‘A system’ and E = 
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3. 1.0s (i.e., 20s every 20 time steps) for the projection of the velocity field. 
4. 0.26s for solving the implicit system for the temperature. 

The performance of the ICCG solver, compared with simple diagonal scaling, is summarized in 
Table 11. Both algorithms have been vectorized. One observes that the truncated ICCG(1,l) 
scheme is faster than diagonal scaling when the number of iterations is large (when E is small or 
when the initial guess lies far from the solution), while the diagonal scaling is cost-,efficient for 
solving the implicit system of the energy equation. 

The code required 870000 words of storage: 125000 words were used for storing A, 149000 for B 
and 49000 for auxiliary tables of the ICCG algorithm; i.e., a total of 323000 words for the A and B 
systems. This number is far less than the 3.5 million words that a direct Choleski solver would 
require. 
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Table 11. 
- 

System ICCG(1, l), truncated Diagonal scaling 

Iterations CPU time (s)  Iterations CPU time ( s ) ~  
- 

Cons. Poisson 
( & = 5  10-5) 32 1.75 120 1.97 
Projection of 
velocity 
(& = 5 10-5) 365 20 1550 25 
Temperature 
(8 = 3.5 1 .o 4.5 0.38 

CONCLUSIONS 

We have shown that the ICCG algorithm is a valuable tool for solving the symmetric and positive- 
definite systems encountered in the numerical solution of the transient three-dimensional 
Boussinesq equations. One of the main advantages of the algorithm is to reduce the memory 
requirements, while the CPU time remains reasonable as compared with tlhe forward 
reduction/back substitution, technique. In fact the reduction of the memory space has been so 
significant that we were able to introduce a second large system in the original algorithm suggested 
by Gresho et al.’ Indeed the advection-diffusion equation for the temperature has beein integrated 
in time by an explicit-implicit method which is quite advantageous for low Prandtl number flows. 
In our present example at Pr  = 0.069 and with 47000 variables the time step of the fully explicit 
algorithm has been multiplied by 6, while the increase in CPU time per time step was only 
marginal. The ICCG algorithm is also expected to be efficient in the case of A and B matrices which 
do not remain constant in time. 

We have found that the flow taking place in a horizontal Bridgman furnace bifurcates from a 
stationary state to an Oscillatory one at a critical value of the Grashof number. Despite the fact that 
some features of the flow exhibit a periodic behaviour, we have not been able to identify a strictly 
periodic three-dimensional flow. 

A serious limitation of the example given in the last section is the assumed symmetry of the flow. 
A recent investigation of the same problem allowing for a non-symmetric solution has revealed 
that the symmetric one switches over to a non-symmetric oscillatory flow. 
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